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Fluctuating fluxes on a complex network lead to load fluctuations at the vertices, which may cause them to
become overloaded and to induce a cascading failure. A characterization of the one-point load fluctuations is
presented, revealing their dependence on the nature of the flux fluctuations and on the underlying network
structure. Based on these findings, an alternate robustness layout of the network is proposed. Taking load
correlations between the vertices into account, an analytical prediction of the probability for the network to
remain fully efficient is confirmed by simulations. Compared to previously proposed mean-flux layouts, the
alternate layout comes with significantly less investment costs in the high-confidence limit.
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I. INTRODUCTION

Much of the infrastructure of modern societies is orga-
nized in complex networks. A failure may lead to dramatic
consequences. It is important to understand the properties
and vulnerabilities of these networks. Error and attack toler-
ance against random and intentional removal of vertices and
links has already been widely studied �1–8�. Also dynamical
failures have been discussed �9–15�, where a component fail-
ure and a subsequent network-wide redistribution of loads
might trigger further cascading failures.

A simple network model to describe a cascading failure
has been put forward by �9�. Every vertex i of the network
G= �V ,E�, described by the sets of vertices V and edges E,
sends a unit flux sif =1 to every other vertex f � i along the
shortest-hop paths �i→ f�. This results in an accumulated
vertex load

Lv =
1

N�N − 1� �
i,f�V

rsp��i → f�;v�sif . �1�

The value of the path function rsp��i→ f� ;v� is either 1 or 0,
depending on whether the vertex v is part of the shortest-hop
path from vertex i to f or not �16�. Based on the load �1�, the
capacities

Cv��� = �1 + ���Lv� �2�

are assigned to the vertices. If for some reason one or more
vertices fail, a network-wide redistribution of the loads �1�
occurs due to a modification of the shortest paths. The new
load Lv of vertex v may become larger than its capacity Cv
and subsequent failures can occur. This sequence of events is
referred to as a cascading failure. In order to reduce or ide-
ally prevent the occurrence of such cascading failures, other
capacity layouts have been proposed �15,17� besides �2�. So
far, all of these approaches have one thing in common. They

assume the flux matrix sif to be uniform and constant. There
are many interesting examples where this is not the case. In
communication and transportation networks sif is known as
the traffic matrix which is subject to temporal fluctuations.
Electricity networks with a large share of renewable power
generation come with strongly fluctuating source fluxes.
More fluctuations in electricity networks are introduced by
power exchange markets.

There is a strong need to study the impact of fluctuating
fluxes on the robustness of networks. Vertices may fail either
directly due to an accumulation of extreme flux fluctuations
or due to a subsequent overload cascade. Immediate ques-
tions that arise are: How does an efficient capacity layout
look, which is able to cope with the fluctuating fluxes? Given
various classes of fluctuating fluxes, how do they determine
the resulting fluctuations in the accumulated vertex loads?
Are there correlations between the accumulated loads of dif-
ferent vertices and how do they look? In the following we
will give answers to these important questions.

II. LOAD FLUCTUATIONS RESULTING FROM FLUX
FLUCTUATIONS

Flux fluctuations are introduced into the modeling �1� by
varying the strengths sif according to some distribution. For
demonstration, we pick a lognormal distribution with mean
�s�=1. The fluctuation strength is defined as its standard de-
viation �=���s−1�2�. We distinguish two fluctuation sce-
narios. The first is denoted as pathlike, where all sif are
drawn independently from each other. For the second, which
we denote as sourcelike, all sif =si belonging to the same
source vertex i are given the same value sampled from the
lognormal distribution.

In order to develop a new capacity layout beyond the
mean-flux case �2�, a good understanding is needed on how
the flux fluctuations determine the load distributions across
the network. We begin by looking at the one-point distribu-
tion pv�Lv�. Expression �1� can be read as a weighted sum of
independently and identically distributed random fluxes sif.
In the case of lognormal fluxes with small fluctuation
strengths ��1, this sum can be approximated again by a
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lognormal distribution �18�. To allow for some more flexibil-
ity we choose a three-parameter generalization of the lognor-
mal distribution

pv�Lv� =
1

�2���Lv − �v�
exp	−

�ln�Lv − �v� − �v�2

2�v
2 
 �3�

for the description of the load distribution. To fit the load
distribution at vertex v, the three parameters �v,�v,�v are
calculated from the first three cumulants of Eq. �3� which
have to be equal to the first three cumulants of the load �1�.
These are for pathlike fluxes

�Lv
n�c = �sn�c �

i�f=1

N � rsp��i → f�;v�
N�N − 1� �n

, �4�

and for sourcelike fluxes

�Lv
n�c = �sn�c�

i=1

N � �
f=1�f�i�

N
rsp��i → f�;v�

N�N − 1� �n

. �5�

Figure 1 compares the predicted three-parameter lognormal
distribution �3�–�5� with simulated one-point load distribu-
tions, which have been sampled from a large number of in-
dependent flux fluctuation realizations on a typical random
scale-free network. For pathlike �not shown� as well as
sourcelike flux fluctuations and for all vertices ranging from
minimum to maximum average load, the analytical distribu-
tions fit the numerical data very well. Note that the one-point
load distribution �3� needs not to be mixed up with the dis-
tribution p��Lv�� of average loads across all vertices of the
network. For the latter we reproduce the result p��L��

�L�−� with ��2.2, which has been shown �19� to be uni-
versal for all scale-free networks with exponent 2	
�3.

The n=2 cumulants of Eqs. �4� and �5� are depicted in
Fig. 2 as a function of the averaged vertex loads. For pathlike
flux fluctuation �inset in Fig. 2� a scaling relation of the type
��Lv

2�c
�Lv�� is found with exponent �=0.5. This disper-

sion relation has already been observed in �20� and related to
internal collective dynamics on the network. However, it has
not been clear whether the found value of the scaling expo-
nent is universal or not. For sourcelike flux fluctuations no
good overall scaling is observed. This is due to the fact that
only the load distribution for high average loads are Gauss-
ian shaped, whereas load distributions of vertices with small
loads have a long tail that increases the variance; consult
again Fig. 1. The asymptotic high or low load regimes are in
accordance with �=0.5 and 0.1, respectively, indicating that
the scaling exponent ��0.5 is not universal.

III. EFFICIENT CAPACITY LAYOUT

The good agreement of the predicted three-parameter log-
normal distributions with the vertex loads allows for a direct
construction of a new capacity layout, which is robust
against the flux fluctuations up to some confidence level. For
a single vertex the quantile

q = �
0

Cv

pv�Lv�dLv = Fv�Cv� �6�

describes the confidence level that its load Lv remains
smaller than its capacity Cv. Since 1−q describes the prob-
ability that the vertex will fail due to direct overloading, a
confidence level very close to one is desirable. A typical
value in engineering is q=0.9999. By presetting the confi-
dence level to such a targeted value, the capacity Cv�q�
=Fv

−1�q� needed at the vertex is obtained from the inverse of
the cumulative distribution function Fv. Since pv�Lv� is
three-parameter lognormal, Fv can be expressed in terms of
the inverse of the cumulative distribution function 
 of a
centered normal distribution with unit variance. This leads to
the capacity assignment
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FIG. 1. �Color online� Simulated load distributions p�Lv� due to
sourcelike flux fluctuations for three fluctuation strengths. Two ver-
tices with minimum �a� and maximum �b� load are depicted. One
typical realization of a random scale-free network, for which the
number of vertices, scale-free exponent, and minimum degree have
been set to N=1000, 
=2.5 and kmin=2, has been used with 104

fluctuation realizations. The dashed curves correspond to the three-
parameter lognormal distribution �TPLN, 3� with predicted param-
eters �4� and �5�.
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FIG. 2. �Color online� The moment ��Lv�=��Lv
2�c of Eqs. �4�

and �5� as a function of the average vertex load �Lv� for one real-
ization of pathlike �inset� and sourcelike fluctuations on random
scale-free �circles� and Poisson �triangles� networks. Parameters are
N=1000, 
=2.5, kmin=2 for the scale-free networks, and N=1000,
�k�=5 for the Poisson networks. Fifty out of 103 vertices are shown.
The dashed and dashed-dotted straight lines represent the scaling
exponents �=0.5 and 0.1.
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Cv�q� = e�v
−1�q�+�v + �v. �7�

In principle, different q values could be assigned to different
vertices, but for simplicity we chose the same q for all ver-
tices.

By this construction, the distribution of the number of
directly failing vertices M due to the fluctuating fluxes will
have a mean of �M�= �1−q�N. As can be seen in Fig. 3 the
actual number may deviate much from this mean. Note that
the shown distributions only depend on the quantile q and
not on the strength of the flux fluctuations. The distributions
would be binomial if the direct failure of a vertex were in-
dependent of the other vertices, however, this is not the case.
The probabilities of directly failing vertices are correlated
since all vertices on a shortest path receive the same flux
strength from the transmitting vertex.

A good approximation to the observed distributions is
provided by the beta-binomial distribution

p�M ;a,b� = �N

M
�B�M + a,N − M + b�

B�a,b�
, �8�

where B�· , ·� is the beta function. It is known to describe
correlated Bernoulli random variables �21�. The two param-
eters a and b can be rewritten as the mean �M� /N= �1−q�
= a

a+b and the correlation measure �= 1
a+b+1 . From best fits of

Eq. �8� to the distributions of Fig. 3 we find the empirical
relation

� = �N�1 − q��, �9�

�see Fig. 4�. Within acceptable precision the exponent � turns
out to be independent of the network size. For �N the N
dependence

�N = �N−� �10�

is found. The following table lists the fitted parameter values
for pathlike and sourcelike flux fluctuations on scale-free
�
=2.5, kmin=2� as well as Poisson networks ��k�=5�.

Path � � � Source � � �

Poisson 1.50 0.53 0.80 Poisson 5.40 0.70 0.80

Scale-free 1.47 0.41 0.80 Scale-free 3.34 0.51 0.80

The good description by the beta-binomial distribution �8�
allows one to make an analytical prediction of the probability
that with the capacity layout �7� no vertex of the network
will fail due to flux fluctuations. This probability p�M =0;1
−q ,�� with � from Eqs. �9� and �10� is equal to the probabil-
ity that the network efficiency �6�

E =
1

N�N − 1� �
i�f�V

1

dif

�11�

remains equal to its initial value E0 of the intact network,
thus p� E

E0
=1�= p�M =0;1−q ,��. The network efficiency rep-

resents a measure to evaluate the quality of a capacity layout.
It includes direct as well as cascading failure of vertices. dif
is the shortest-hop distance between vertices i and f . Figure 5
compares the predicted p�M =0;1−q ,�� with numerical
data.

Since the correlation � of the beta-binomial distribution
goes to zero as q goes to one, the probability p� E

E0
=1� can

also be approximated using the binomial distribution
pbin�M =0;1−q�; see again Fig. 5. This gives a parameter-
free approximation to the probability that no vertex fails. The
same relation also holds for pathlike flux fluctuations.

Finally, we compare the investment costs I=�v�VCv
= I���= I�q� relative to I0=�v�V�Lv� of the two capacity lay-
outs �2� and �7�. These are functions of the tolerance param-
eter � and the quantile q, respectively. Figure 6 shows the
efficiency �11� of a scale-free network as a function of I. For
sourcelike flux fluctuations the efficiency of Eq. �7� remains
close to zero up to a critical investment cost, only then to
jump up and to overtake the efficiency of Eq. �2�. In the limit
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FIG. 3. �Color online� Probability distributions for the number
of directly failing vertices due to sourcelike flux fluctuations in a
scale-free network. Network parameters are as in the previous fig-
ures. 104 flux realizations have been used for various fluctuation
strengths. The distributions only depend on the quantile �6�: q
=0.8 �right�, 0.9 �center�, and 0.99 �left�. The dotted and dashed
curves correspond to binomial and beta-binomial distributions with
the same mean �1−q�N. The correlation parameter � of the beta-
binomial distribution has been calculated with Eqs. �9� and �10�.
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FIG. 4. �Color online� Relation between the parameters � and
�1−q� of the beta-binomial distributions �8�, which have been di-
rectly fitted to the sampled distributions of Fig. 3.
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E /E0→1 the investment costs into the newly proposed ca-
pacity layout �7� are significantly smaller than for the stan-
dard layout �2�. For pathlike flux fluctuations both capacity
layouts reveal an abrupt transition from low to high effi-
ciency at very low investment costs.

IV. CONCLUSION

A robust capacity layout has been developed. It is able to
cope with the load fluctuations induced by flux fluctuations
transported on the network. Within a given confidence level
it supports the network to operate at full efficiency and guar-

antees robustness against a cascading failure. Since these
findings have been based on a simple network model �9�, it
will make sense to discuss various model extensions, such as
those proposed in Refs, �22–24�, which distinguish between
internal and external fluctuation dynamics. The ultimate
challenge will be to carry over these ideas to real-life infra-
structure networks such as, for example, electricity networks
facing a growing fraction of fluctuating renewable energy
sources.
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